

Lecture -17

SHIFT OF WEED FLORA IN CROPPING SYSTEMS

Shifts in weeds are not new. Weed shifts have happened as long as humans have cultivated crops. Weedy and invasive species can easily adapt to changes in production practices in order to take advantage of the available niches. Weeds are well equipped to flourish in disturbed agricultural systems. Weeds are genetically diverse and can readily take advantage of the variety of conditions created by any crop production system. Therefore, one key to reducing the predominance of any given weed species is to increase the diversity of crops within the cropping system, or at least the diversity of weed management practices within the cropping system.

A change from conventional tillage to a conservation tillage system can lead to shifts in weed species composition. Weed shifts can also occur both within a population of a certain species (e.g., surviving mutants), or within a plant community (e.g., certain species). A weed species shift can result in the emergence of weeds tolerant of existing weed management practices. A need to recognise and understand shifts in weed populations in various cropping systems is important. An understanding of crop production effects on weed species shifts can lead to development of improved weed management strategies.

WEED SHIFT

A weed shift is the change in the composition or relative frequencies of weeds in a weed population (all individuals of a single species in a defined area) or community (all plant populations in a defined area) in response to natural or human-made environmental changes in an agricultural system.

Weed shifts occur when weed management practices do not control an entire weed community or population. The management practice could be herbicide use or any other practice such as tillage, manure application, or harvest schedule that brings about a change in weed species composition.

Some species or biotypes are killed by (or susceptible to) the weed management practice, others are not affected by the management practice (tolerant or resistant), and still others do not encounter the management practice (dormant at application). Those species that are not controlled can grow, reproduce, and increase in the community; resulting in a weed shift. Any cultural, physiological, biological, or chemical practice that modifies the growing environment without controlling all species equally can result in a weed shift.

In the case of chemical weed control, no single herbicide controls all weeds, as weeds differ in their susceptibility to an herbicide. Susceptible weeds are largely eliminated over time

with continued use of the same herbicide. This allows inherently tolerant weed species to remain, which often thrive and proliferate with the reduced competition. As a result, there is a gradual shift to tolerant weed species when practices are continuously used that are not effective against those species. A weed shift does not necessarily have to be a shift to a different species. For example, with a foliar herbicide without residual activity like glyphosate, there could also be a shift within a weed species to a late emerging biotype that emerges after application.

WEED RESISTANCE

In contrast to weed shift, weed resistance is a change in the population of weeds that were previously susceptible to an herbicide, turning them into a population of the same species that is no longer controlled by that herbicide. While weed shifts occur with any agronomic practice (crop rotation, tillage, frequent harvest or use of particular herbicide), the evolution of weed resistance is only the result of continued herbicide application. The use of a single class herbicide application continuously over time creates selection pressure so that resistant individuals of a species survive and reproduce, while susceptible ones are killed.

A weed shift is far more common than weed resistance, and ordinarily take less time to develop. If an herbicide does not control all the weeds, the tendency is to quickly jump to the conclusion that resistance has occurred.

A common misconception is that weed resistance is intrinsically linked to genetically engineered crops. However, this is not correct. The occurrence of weed shifts and weed resistance is not unique to genetically engineered crops. Weed shifts and resistance are caused by the practices (for example repeated use of single herbicide) that may accompany a genetically engineered crop and not the GE crop itself. Similarly, there is another belief that resistance is transferred from GE crop to weed species. However, unless the crop is genetically very closely related to naturally occurring weed, weed resistance cannot be transferred from crop to weed.

Transgenic herbicide resistance crops have greater potential to foster weed shifts and resistant weeds since a grower is more likely to use single herbicide in transgenic herbicide resistance crops. The increase in acreage of these crops could increase the potential for weed shifts and weed resistance in the cropping systems utilising transgenic herbicide resistance crops.

WEED MANAGEMENT PRINCIPLES TO REDUCE WEED SHIFTS AND RESISTANCE

WEED IDENTIFICATION

Effective weed management practices begin with proper identification to assess the competitiveness of the weeds present and to select the proper herbicide if one is needed. A weed management strategy to prevent weed shifts and weed resistance requires knowledge of the composition of weeds present. Identification of young seedlings is particularly important because seedling weeds are easier to control.

FREQUENT MONITORING FOR ESCAPES

It is difficult to detect an emerging weed shift or weed resistance problem if fields are not frequently monitored for weeds that escape current weed management practices. Identification and frequent monitoring can detect problem weeds early and guide management practices, including herbicide selection, rate and timing.

HERBICIDE RATE AND TIMING

In weed management programme the grower must be sure to use the proper herbicide rate for the particular weeds species as they may sometimes be tolerant to lower doses. And also the time of application of the herbicide dose is important i.e. it treats the weeds when they are small, because after crossing certain stage they may be tolerant to that particular herbicide or dosage.

CROP ROTATION

One of the most effective practices for preventing weed shifts and weed resistance is crop rotation, which allows growers to modify selection pressure imposed on weeds. Crops differ in their ability to compete with weeds; some weeds are a problem in some crops, while they are less problematic in others. Rotation therefore would not favor any particular weed spectrum. Crop rotation also allows the use of different weed control practices, such as cultivation and application of herbicides with different sites of action. As a result, no single weed species or biotype should become dominant.

AGRONOMIC PRACTICES

In addition to crop rotation, several management practices may have an impact on the selection of problem weed populations. If problem weeds germinate at a specific time of year, crop seeding date can be shifted to avoid these weed populations. Delaying irrigation after can reduce germination of certain summer annual weeds. However, this practice only works on some soil types and water stress resistant crops only. Harvest management can, assist in eliminating or suppressing problem weed populations in some cases, but harvest must occur before weed seed production to prevent weed proliferation.

ROTATION OF HERBICIDES

Weed shifts occur because herbicides are not equally effective against all weed species and herbicides differ greatly in the weed spectrum they control. A weed species that is not controlled will survive and increase in density following repeated use of one herbicide. Therefore, rotating herbicides is recommended. Rotation of herbicides reduces weed shifts, provided the rotation herbicide reduces weed shifts, provided the rotational herbicide is highly effective against the weed species that is not controlled with the primary herbicide. The grower should rotate to an herbicide with a complimentary spectrum of weed control, along with a different mechanism of action and therefore a different herbicide binding site. Weed susceptibility charts are useful to help develop an effective herbicide binding site and herbicide rotation scheme. In addition, publications on herbicide chemical families are available to assist growers in choosing herbicides with different mechanisms of action.

Rotating herbicides is also an effective strategy for resistance management. Within a weed species there are different biotypes, each with its own genetic makeup, enabling some of them to survive a particular herbicide application. The susceptible weeds in a population are killed, while the resistant ones survives, set seed, and increase over time. Using an effective herbicide with a different mode of action from the one to which the weeds are resistant, however, controls both the susceptible and resistant biotypes. This prevents reproduction and slows the spread of the resistant biotype.

Frequency of Rotation depends on weed species and escapes. There is no definitive rule on how often herbicides should be rotated. It is better to rotate at least once on the middle years or more often for perennial crop. It can also be modified depending upon actual observations of evolving weed problems. The key point, which cannot be overemphasized, is the importance of thorough monitoring for weed escapes. Producers should stay alert to the appearance of weed species shifts and evolution of resistant weeds. Weed resistance should be confirmed by controlled studies conducted by a weed scientist. However in these situations, it is imperative to prevent reproduction of a potentially resistant biotype. Treat weed escapes with alternative herbicides or other effective control measure.

Agrilinfoz.com
Agriculture knowledge hub...